The values in Group 1 are the sums o f the values in the subsequent groups. Where pendants of the same color are in similar positions in different groups, their values are related. However, the sum seems to be more related to pendant color than position. While other sum statements might be as valid, one which accounts for most values follows. (Note: P_{ij} is the value of the j^{th} pendant in the
i^{th}th group. P_{ijsk} is the value of the k^{th} subsidiary on the j^{th} pendant in the i^{th} group.)
\[P_{11}+P_{11s1}+P_{11s2}=P_{21}+P_{31}+P_{41}+P_{51}+P_{61}+P_{71}\;for\;all\;LD \]
\[P_{12}=P_{23}+P_{43}+P_{53}\;for\;all\;(MB) \]
\[P_{12s1}=P_{43s1}\;for\;all\;(W) \]
\[P_{13s1}=P_{52}+P_{22s1}+P_{24s1}+P_{44s1}\;for\;all\;(RL) \]
\[^{(RL)}{P_{13}=P_{22}+P_{32}+P_{92}}\;+\;^{(W)}{P_{63}}\;+\;^{(LD:W)}{P_{24}+P_{54}}\;for\;all\;(LD:W)\]
\[P_{14s1}=P_{32s1}\;for\;all\;(LD:W)\]
\[^{(LD:W)}{P_{14}}=^{(LD:W)}{P_{22}}\;\;+^{(LD-W)}{P_{73}}\;\;+^{(RL:W)}{P_{64}+P_{72}+P_{72s1}+P_{81}+P_{83}}\;for\;all\;(LD:W)\]
Inexact sums on subsidiaries of position 1 in Group 1:
\[P_{11s1s1}+P_{11s2s2}\;exceeds\;P_{61s1}+P_{71s1}\;by\;6\;for\;all\;MB \]
\[P_{11s1s2}\;exceeds\;P_{31s1}\;by\;1\;for\;all\;W \]
\[P_{11s2s1}\;exceeds\;P_{21s1}+P_{51s1}+P_{71s1}\;by\;2\;for\;all\;RL \]
Seven values in groups 2-10 unaccounted for in sums :
\[^{(LD:W)}{P_{14}}=\;^{(LD:W)}{P_{22}}\;+\;^{(LD-W)}{P_{73}}\;+\;^{(RL:W)}{P_{64}+P_{72}+P_{72s1}+P_{81}+P_{83}}\;for\;all\;(LD:W)\]