Drawings:

Right Handed Sums:     # Sums = 1,  Max # Summands = 3,   (Min, Mean, Max) Sum Values = (18, 18, 18)
Click on Image to View Larger

Right Handed Sum Detail: - Click on column name to sort
# Color Sum Schema Sum Cord Sum Cord Value # Summands Summands
1
p21, 2 : 18MB183p7: 7MB + p13: 8MB + p17: 3MB

Khipu Notes:
Ascher Databook Notes:
1. By spacing there are 10 groups of 4, 4,2, 4, 4, 4,3, 3,3, 1 pendants. There is some consistency of color pattern. LD appears in 9 of the 10 groups in position 1 and in no other positions.
Groups 2, 4, and 5 have the same color pattern: LD, RL, MD, LD:W.
Group 1 is similar, but with the colors of positions 2 and 3 reversed and RL:W instead of LD: W.
The association of position 3 in Group 2 with position 2 in other groups, and of RL:W with LD:W, is further seen when examining numerical relationships.
2. The values in Group 1 are the sums o f the values in the subsequent groups. Where pendants of the same color are in similar positions in different groups, their values are related. However, the sum seems to be more related to pendant color than position. While other sum statements might be as valid, one which accounts for most values follows. (Note: Pij is the value of the jth pendant in the ithth group. Pijsk is the value of the kth subsidiary on the jth pendant in the ith group.)
$P_{11}+P_{11s1}+P_{11s2}=P_{21}+P_{31}+P_{41}+P_{51}+P_{61}+P_{71}\;for\;all\;LD$
$P_{12}=P_{23}+P_{43}+P_{53}\;for\;all\;(MB)$
$P_{12s1}=P_{43s1}\;for\;all\;(W)$
$P_{13s1}=P_{52}+P_{22s1}+P_{24s1}+P_{44s1}\;for\;all\;(RL)$

$^{(RL)}{P_{13}=P_{22}+P_{32}+P_{92}}\;+\;^{(W)}{P_{63}}\;+\;^{(LD:W)}{P_{24}+P_{54}}\;for\;all\;(LD:W)$
$P_{14s1}=P_{32s1}\;for\;all\;(LD:W)$
$^{(LD:W)}{P_{14}}=^{(LD:W)}{P_{22}}\;\;+^{(LD-W)}{P_{73}}\;\;+^{(RL:W)}{P_{64}+P_{72}+P_{72s1}+P_{81}+P_{83}}\;for\;all\;(LD:W)$

Inexact sums on subsidiaries of position 1 in Group 1:
$P_{11s1s1}+P_{11s2s2}\;exceeds\;P_{61s1}+P_{71s1}\;by\;6\;for\;all\;MB$
$P_{11s1s2}\;exceeds\;P_{31s1}\;by\;1\;for\;all\;W$
$P_{11s2s1}\;exceeds\;P_{21s1}+P_{51s1}+P_{71s1}\;by\;2\;for\;all\;RL$

Seven values in groups 2-10 unaccounted for in sums :
$^{(LD:W)}{P_{14}}=\;^{(LD:W)}{P_{22}}\;+\;^{(LD-W)}{P_{73}}\;+\;^{(RL:W)}{P_{64}+P_{72}+P_{72s1}+P_{81}+P_{83}}\;for\;all\;(LD:W)$