KH0192/UR1175, AS175 - Colored Pendant Sums


Drawings:

Right Handed Sums:     # Sums = 28,  Max # Summands = 10,   (Min, Mean, Max) Sum Values = (12, 77, 290)
Click on Image to View Larger

Left Handed Sums:     # Sums = 20,  Max # Summands = 8,   (Min, Mean, Max) Sum Values = (12, 78, 290)
Click on Image to View Larger

Right Handed Sum Detail: - Click on column name to sort
# Color Sum Schema Sum Cord Sum Cord Value # Summands Summands
1
g1p1 : 26LB263g15p2: 5LB + g16p2: 11LB + g17p2: 10LB
2
g1p2 : 160YG1604g33p3: 16YG + g34p3: 30YG + g35p3: 54YG + g36p3: 60YG
3
g2p1 : 21W215g31p1: 6W + g32p1: 3W + g33p1: 3W + g34p1: 3W + g35p1: 6W
4
g2p2 : 26LB263g15p2: 5LB + g16p2: 11LB + g17p2: 10LB
5
g3p1 : 25W257g29p1: 2W + g30p1: 2W + g31p1: 6W + g32p1: 3W + g33p1: 3W + g34p1: 3W + g35p1: 6W
6
g3p2 : 35LB353g39p2: 20LB + g40p2: 10LB + g41p2: 5LB
7
g4p1 : 23W236g30p1: 2W + g31p1: 6W + g32p1: 3W + g33p1: 3W + g34p1: 3W + g35p1: 6W
8
g5p1 : 36W364g34p1: 3W + g35p1: 6W + g36p1: 17W + g37p1: 10W
9
g5p3 : 122YG1223g37p3: 29YG + g38p3: 58YG + g39p3: 35YG
10
g6p1 : 12W123g31p1: 6W + g32p1: 3W + g33p1: 3W
11
g7p1 : 85W8510g32p1: 3W + g33p1: 3W + g34p1: 3W + g35p1: 6W + g36p1: 17W + g37p1: 10W + g38p1: 10W + g39p1: 8W + g40p1: 12W + g41p1: 13W
12
g8p1 : 66W667g34p1: 3W + g35p1: 6W + g36p1: 17W + g37p1: 10W + g38p1: 10W + g39p1: 8W + g40p1: 12W
13
g8p3 : 129YG1293g38p3: 58YG + g39p3: 35YG + g40p3: 36YG
14
g10p1 : 12W123g31p1: 6W + g32p1: 3W + g33p1: 3W
15
g11p1 : 13W134g26p1: 5W + g27p1: 4W + g28p1: 2W + g29p1: 2W
16
g12p3 : 290YG2904g17p3: 100YG + g18p3: 120YG + g19p3: 40YG + g20p3: 30YG
17
g13p1 : 62W6210g29p1: 2W + g30p1: 2W + g31p1: 6W + g32p1: 3W + g33p1: 3W + g34p1: 3W + g35p1: 6W + g36p1: 17W + g37p1: 10W + g38p1: 10W
18
g14p1 : 30W303g38p1: 10W + g39p1: 8W + g40p1: 12W
19
g15p1 : 31W319g27p1: 4W + g28p1: 2W + g29p1: 2W + g30p1: 2W + g31p1: 6W + g32p1: 3W + g33p1: 3W + g34p1: 3W + g35p1: 6W
20
g17p3 : 100YG1003g33p3: 16YG + g34p3: 30YG + g35p3: 54YG
21
g20p5 : 46YB:0G463g28p5: 12YB:0G + g35p5: 16YB:0G + g36p5: 18YB:0G
22
g22p2 : 35LB353g39p2: 20LB + g40p2: 10LB + g41p2: 5LB
23
g22p4 : 200YB2003g38p5: 60YB + g44p4: 50YB + g45p4: 90YB
24
g23p1 : 108W10810g24p1: 75W + g25p1: 6W + g26p1: 5W + g27p1: 4W + g28p1: 2W + g29p1: 2W + g30p1: 2W + g31p1: 6W + g32p1: 3W + g33p1: 3W
25
g23p4 : 250YB2503g26p4: 50YB + g28p4: 100YB + g29p4: 100YB
26
g24p1 : 75W753g40p1: 12W + g41p1: 13W + g43p1: 50W
27
g24p2 : 66LB667g35p2: 3LB + g36p2: 4LB + g37p2: 12LB + g38p2: 12LB + g39p2: 20LB + g40p2: 10LB + g41p2: 5LB
28
g26p3 : 65YG654g30p3: 40YG + g31p3: 6YG + g32p3: 3YG + g33p3: 16YG

Left Handed Sum Detail: - Click on column name to sort
# Color Sum Schema Sum Cord Sum Cord Value # Summands Summands
1
g12p3 : 290YG2903g6p3: 82YG + g7p3: 79YG + g8p3: 129YG
2
g14p1 : 30W303g10p1: 12W + g11p1: 13W + g12p1: 5W
3
g19p5 : 42YB:0G423g6p5: 9YB:0G + g8p5: 11YB:0G + g9p5: 22YB:0G
4
g22p4 : 200YB2003g12p4: 100YB + g14p4: 50YB + g15p4: 50YB
5
g23p2 : 36LB364g15p2: 5LB + g16p2: 11LB + g17p2: 10LB + g18p2: 10LB
6
g23p4 : 250YB2503g11p4: 100YB + g12p4: 100YB + g14p4: 50YB
7
g24p2 : 66LB664g16p2: 11LB + g17p2: 10LB + g18p2: 10LB + g22p2: 35LB
8
g36p1 : 17W173g17p1: 4W + g18p1: 3W + g19p1: 10W
9
g37p5 : 60YB:0G603g13p5: 20YB:0G + g14p5: 20YB:0G + g15p5: 20YB:0G
10
g39p2 : 20LB203g10p2: 5LB + g11p2: 10LB + g12p2: 5LB
11
g39p5 : 94YB:0G943g35p5: 16YB:0G + g36p5: 18YB:0G + g37p5: 60YB:0G
12
g40p1 : 12W123g31p1: 6W + g32p1: 3W + g33p1: 3W
13
g41p1 : 13W134g26p1: 5W + g27p1: 4W + g28p1: 2W + g29p1: 2W
14
g42p5 : 49YB:0G493g9p5: 22YB:0G + g10p5: 6YB:0G + g11p5: 21YB:0G
15
g43p1 : 50W508g30p1: 2W + g31p1: 6W + g32p1: 3W + g33p1: 3W + g34p1: 3W + g35p1: 6W + g36p1: 17W + g37p1: 10W
16
g43p2 : 40LB405g7p2: 11LB + g8p2: 11LB + g9p2: 3LB + g10p2: 5LB + g11p2: 10LB
17
g44p1 : 70W706g36p1: 17W + g37p1: 10W + g38p1: 10W + g39p1: 8W + g40p1: 12W + g41p1: 13W
18
g44p2 : 40LB405g7p2: 11LB + g8p2: 11LB + g9p2: 3LB + g10p2: 5LB + g11p2: 10LB
19
g44p3 : 140YG1405g29p3: 75YG + g30p3: 40YG + g31p3: 6YG + g32p3: 3YG + g33p3: 16YG
20
g45p1 : 50W508g30p1: 2W + g31p1: 6W + g32p1: 3W + g33p1: 3W + g34p1: 3W + g35p1: 6W + g36p1: 17W + g37p1: 10W

Khipu Notes:
Ascher Databook Notes:
  1. This is one of several khipus acquired by the Museum in 1907 with provenance Pachacamac. For a list of them, see KH0110.
  2. By spacing, the khipu is separated into 45 groups of 5 pendants each. There is a larger space after every 3rd group and a still larger space between the 21st and 22nd groups and the 24th and 25th groups. Thus, the khipu is in 3 parts: part 1 is 7 sets of 3 groups each; part 2 is 1 set of 3 groups; and part 3 is 7 sets of 3 groups.
  3. All groups in part 1 have the same color pattern: W (with a W subsidiary); LB (with an LB subsidiary); YG; YB; YB: 0G. Groups in parts 2 and 3 have the same pattern for the first 3 pendant positions and then vary in one or both of the last 2 positions. Calling the colors in the part 1 pattern C1-C5, the color patterns are summarized in Table 1.

    TABLE 1

    Part 1 (groups 1-21)C1C2C3C4C5
    Part 2 (groups 1-3)C1C2C3C4C4
    Part 3 (groups 1-5)C1C2C3C2C5
    Part 3 (groups 6-8)C1C2C3C2C4
    Part 3 (groups 9-21)C1C2C3C4C4


    In all groups, there is at least one subsidiary on pendants 1 and 2 (a W and an LB respectively) and no subsidiaries on the other positions. Additional subsidiaries on the first 2 positions are, with one exception, KB:W or LB-W.
  4. In parts 1 and 3, many values are repeated in the same position in consecutive groups or in the same position 2 groups later. The former can be represented as:,

    Pij= Pi+1,j and the latter as Pij = Pi+2,j

    In part 1, these hold in 20 and 12 places respectively; in part 2 in no places; and in part 3 in 27 and 18 places.

  5. The values in part 2 are related to the sums of values in part 3. Position by position, values in group 1 of part 2 are related to the sums of values in the first groups in each of the 7 sets in part 3; group 2 values are related to sums of values in the second groups of each of the sets; and group 3 values to the sums of values of the third group. That is:
    \[ P_{2ij}= \sum\limits_{k=0}^{6} P_{3,3k+i,j}\;\;\;for\;j=(1,2,...5),\;\; i=(1,2,3) \]
    This represents 15 sums and 105 values being summed. Of the 15 values in part 2, 8 are exactly these sums (or off by 1 in 1 digit); 5 are exact sums of only some of the 7 pendants:

    Example: P211 = P341 + P3,10,1 + P3,13,1 + P3,16,1 + P3,19,1 thus omitting P311 and P371

    and 2 are less than the sums but cannot be associated with a specific subset of the 7 pendants. (Note that the main cord is broken and so there could have been another part prior to part 1 that summed its values.