KH0079/AS066 - Indexed Pendant Sums


Drawings:

Right Handed Sums:     # Sums = 17,  Max # Summands = 6,   (Min, Mean, Max) Sum Values = (12, 31, 101)
Click on Image to View Larger

Left Handed Sums:     # Sums = 28,  Max # Summands = 3,   (Min, Mean, Max) Sum Values = (12, 18, 32)
Click on Image to View Larger

Right Handed Sum Detail: - Click on column name to sort
# Color Sum Schema Sum Cord Sum Cord Value # Summands Summands
1
g3p2 : 101W1015g44p2: 28MB + g46p2: 25MB + g47p2: 4MB + g49p2: 31W + g53p2: 13W
2
g6p2 : 24KB242g25p2: 17MB + g28p2: 7MB
3
g6p4 : 24KB242g34p4: 13MB + g35p4: 11W
4
g7p2 : 21W212g31p2: 6MB + g32p2: 15MB
5
g10p2 : 72W726g31p2: 6MB + g32p2: 15MB + g34p2: 13MB + g35p2: 13W + g37p2: 12W + g38p2: 13W
6
g25p4 : 17MB172g53p4: 12W + g54p4: 5MB
7
g34p3 : 12MB122g41p3: 6W + g43p3: 6MB
8
g37p2 : 12W122g41p2: 6W + g43p2: 6MB
9
g37p4 : 12W122g41p4: 6W + g43p4: 6MB
10
g44p1 : 28MB283g51p1: 10MB + g53p1: 13W + g54p1: 5MB
11
g44p3 : 29MB292g46p3: 25MB + g47p3: 4MB
12
g46p4 : 25MB252g56p4: 19MB + g58p4: 6KB
13
g49p2 : 31W312g56p2: 25MB + g58p2: 6KB
14
g49p5 : 31W312g56p5: 25MB + g58p5: 6W
15
g49p6 : 31W312g56p6: 25MB + g58p6: 6W
16
g49p7 : 32W322g56p7: 25MB + g58p7: 7W
17
g49p8 : 31W312g56p8: 25MB + g58p8: 6W

Left Handed Sum Detail: - Click on column name to sort
# Color Sum Schema Sum Cord Sum Cord Value # Summands Summands
1
g32p1 : 15MB152g10p1: 9W + g12p1: 6W
2
g34p2 : 13MB132g28p2: 7MB + g29p2: 6MB
3
g35p2 : 13W132g28p2: 7MB + g29p2: 6MB
4
g35p3 : 13W132g28p3: 6MB + g29p3: 7MB
5
g37p2 : 12W122g29p2: 6MB + g31p2: 6MB
6
g37p3 : 13W132g28p3: 6MB + g29p3: 7MB
7
g37p4 : 12W122g28p4: 6MB + g29p4: 6MB
8
g38p2 : 13W132g28p2: 7MB + g29p2: 6MB
9
g38p3 : 13W132g28p3: 6MB + g29p3: 7MB
10
g40p2 : 13W132g28p2: 7MB + g29p2: 6MB
11
g40p3 : 13W132g28p3: 6MB + g29p3: 7MB
12
g44p2 : 28MB282g32p2: 15MB + g34p2: 13MB
13
g44p3 : 29MB293g29p3: 7MB + g31p3: 7MB + g32p3: 15MB
14
g46p1 : 25MB252g9p1: 16W + g10p1: 9W
15
g46p2 : 25MB252g35p2: 13W + g37p2: 12W
16
g46p3 : 25MB252g34p3: 12MB + g35p3: 13W
17
g46p4 : 25MB252g37p4: 12W + g38p4: 13W
18
g49p1 : 31W313g9p1: 16W + g10p1: 9W + g12p1: 6W
19
g49p3 : 32W323g38p3: 13W + g40p3: 13W + g41p3: 6W
20
g49p4 : 18W183g28p4: 6MB + g29p4: 6MB + g31p4: 6MB
21
g51p3 : 14MB142g25p3: 8MB + g28p3: 6MB
22
g51p4 : 12MB122g28p4: 6MB + g29p4: 6MB
23
g53p2 : 13W132g28p2: 7MB + g29p2: 6MB
24
g53p3 : 14W142g25p3: 8MB + g28p3: 6MB
25
g53p4 : 12W122g28p4: 6MB + g29p4: 6MB
26
g56p1 : 25MB252g9p1: 16W + g10p1: 9W
27
g56p2 : 25MB252g35p2: 13W + g37p2: 12W
28
g56p4 : 19MB192g32p4: 6MB + g34p4: 13MB

Khipu Notes:
Ascher Databook Notes:
  1. This khipu is associated with KH0070-KH0080. See discussion under KH0070.
  2. From the discoloration of the main cord, and by extrapolation based on the spacing of the complete groups, we hypothesize that this khipu contained 24 groups of 8 pendants.
    Each of the groups had a top cord. Of the original 80 pendants of the first 10 groups, only 35 remain and so the first complete group starts with pendant 36. Of the last 14 groups, no pendants are missing.
  3. Two loose broken cords were associated with this khipu: one, colored DB, had a value of 50; the other, colored AB, had a value of 14.
  4. Both common forms of top cord attachment are present on this khipu. In groups 18, 19, and 21-24, the top cord unites the pendants. In the remaining groups, the top cord is attached to the main cord in the center of the group.
    The first pendant of the 18th group (P92) is a different color than the rest of the group reinforcing the idea that this is a place where a change occurs.
  5. All pendant cords within a group are the same color with the exception of group 18 noted above and groups 16, 20, and 23 in which the first 4 pendants are one color and the last 4 another color.
    In 2 of these groups the top cord is the same color as the first 4 pendants in the group. The third group has the top cord missing so its color is unknown.
  6. Only 6 groups have the top cord the same color as all the pendants in the group. Five of these groups are the only groups for which all pendants in the group have the same value.
  7. The color of the top cords for groups 8-11 (BB, W, DB, W) are repeated for the next 4 groups (12-15).
  8. With the exception of group 19, all groups that have all pendant values and top cord value present show the following relationship:
    \[ \sum\limits_{j=1}^4 P_{ij} = \sum\limits_{j=5}^8 P_{ij} = \frac{top\_value}{2}\;\;\;for\;(i=13,15,16,17,18,21,22,23,24) \]
    Where one of the three parts of the relationship is unknown due to breakage, the other two still appear:
    \[ \sum\limits_{j=1}^4 P_{ij} = \sum\limits_{j=5}^8 P_{ij} = \frac{top\_value}{2}\;\;\;for\;(i=12,14,17) \]
    \[ \sum\limits_{j=1}^4 P_{ij} = \frac{top\_value}{2}\;\;\;for\;(i=9) \]
    \[ \sum\limits_{j=5}^8 P_{ij} = \frac{top\_value}{2}\;\;\;for\;(i=2,10,11) \]

    (Note: Pij is the value of the jth pendant in the ith group.)

  9. As noted in observation 6, five groups have all equal pendant values. The sum value on the top cord must, therefore, be a multiple of 8.
    In some cases where the top value is not a multiple of 8, the pendant values can be viewed as top value/ 8 rounded to the nearest integers.
    This is seen in groups 11,12,16,23 where the sums are 50. The pendant values are 6x6 + 2x7.
    Similarly in group 9, the pendant values can be viewed as rounded to the nearest multiple of 10. That is 150 = 3x40 + 1x30.
  10. Groups 17 and 19 both have the same relationship among the first 4 pendants:
    \[ P_{1} = P_{2} = \frac{x}{4} + 3 \]
    \[ P_{3} = \frac{x}{4} + 4 \]
    \[ P_{4} = \frac{x}{4} - 10 \]
    And as a result:
    \[ P_{1}+P_{2} = \frac{x}{2} + 6,\;\;\;\;\;\;\;P_{3}+P_{4} = \frac{x}{2} - 6\]
    For group 17, where X=100 and for group 19, where X=112.

    Since group 19 is the only group for which P1 + P2 + P3 + P4 ≠ P5 + P6 + P7 + P8, it is interesting to note that also:

    \[ P_{1}+P_{2}+P_{3}+P_{4} = \frac{top\_value}{2}-6\;\;\;where\;\frac{top\_value}{2}\;is\;rounded\;DOWN \]
    \[ P_{5}+P_{6}+P_{7}+P_{8} = \frac{top\_value}{2}+6\;\;\;where\;\frac{top\_value}{2}\;is\;rounded\;UP \]