KH0097/UR1084, AS084 - Pendant Pendant Sums
Drawings:
Right Handed Sums: # Sums = 26, Max # Summands = 12, (Min, Mean, Max) Sum Values = (22, 351, 1185)
Click on Image to View Larger
Left Handed Sums: # Sums = 21, Max # Summands = 15, (Min, Mean, Max) Sum Values = (23, 508, 1575)
Click on Image to View Larger
Right Handed Sum Detail: - Click on column name to sort
| # | Color | Sum Schema | Sum Cord | Sum Cord Value | # Summands | Summands |
|---|---|---|---|---|---|---|
| 1 | ![]() | g1p13 : 456W:BL:MB | 456 | 7 | g6p4: 50W:BL:MB + g6p5: 220W-MB + g6p6: 22W-BY + g6p7: 33W-BY + g6p8: 66BY:BL + g6p9: 32W:BY + g6p10: 33W:MB | |
| 2 | ![]() | g2p8 : 76W:BL | 76 | 2 | g5p11: 33W:MB + g5p12: 43W | |
| 3 | ![]() | g2p10 : 33W:MB | 33 | 2 | g3p2: 12W + g3p3: 21W | |
| 4 | ![]() | g5p1 : 1077W | 1077 | 2 | g12p1: 1065W + g12p2: 12W-BY | |
| 5 | ![]() | g7p11 : 43W | 43 | 2 | g18p6: 22W:MB + g18p7: 21W:BL | |
| 6 | ![]() | g8p1 : 1089W | 1089 | 10 | g24p7: 13W:BL + g24p8: 23W + g24p9: 0W:MB + g24p10: 13W:BY + g24p11: 0MB + g24p12: 22W:BL + g24p13: 0W:MB + g24p14: 22MB + g24p15: 0MB + g25p1: 996W | |
| 7 | ![]() | g8p4 : 50W:BL:MB | 50 | 3 | g24p5: 14W:BY + g24p6: 23W:MB + g24p7: 13W:BL | |
| 8 | ![]() | g10p8 : 76W:BL | 76 | 2 | g11p9: 32W:MB + g11p10: 44W:MB | |
| 9 | ![]() | g11p1 : 1087W | 1087 | 5 | g14p14: 42YB + g15p1: 924W + g15p2: 21W-BY + g15p3: 0MB + g15p4: 100W:BL | |
| 10 | ![]() | g12p1 : 1065W | 1065 | 5 | g12p11: 42W + g13p1: 912W + g13p2: 11W-BY + g13p3: 0MB + g13p4: 100W:BL | |
| 11 | ![]() | g14p1 : 1030W | 1030 | 3 | g25p12: 22W:BL + g26p1: 997W + g26p2: 11W-BY | |
| 12 | ![]() | g14p10 : 66W:MB | 66 | 4 | g19p5: 10W:BY + g19p6: 12W:MB + g19p7: 22W:BL + g19p8: 22W | |
| 13 | ![]() | g15p7 : 222W-BY | 222 | 3 | g17p2: 12W-BY + g17p3: 200W + g17p4: 10W:BY | |
| 14 | ![]() | g15p11 : 32W | 32 | 2 | g17p4: 10W:BY + g17p5: 22W:BY | |
| 15 | ![]() | g15p14 : 42MB | 42 | 2 | g18p9: 21W:MB + g18p10: 21W:MB | |
| 16 | ![]() | g17p7 : 32W:BY | 32 | 2 | g18p7: 21W:BL + g18p8: 11W:BY | |
| 17 | ![]() | g17p11 : 44W:BL | 44 | 3 | g19p5: 10W:BY + g19p6: 12W:MB + g19p7: 22W:BL | |
| 18 | ![]() | g17p13 : 34MB | 34 | 2 | g19p6: 12W:MB + g19p7: 22W:BL | |
| 19 | ![]() | g18p1 : 1164W | 1164 | 9 | g23p10: 43W:BY + g23p11: 22W + g23p12: 0PK + g23p13: 32MB + g23p14: 0MB + g24p1: 956W + g24p2: 11W-BY + g24p3: 0MB + g24p4: 100W-BY | |
| 20 | ![]() | g18p14 : 22MB | 22 | 2 | g19p5: 10W:BY + g19p6: 12W:MB | |
| 21 | ![]() | g19p1 : 1185W | 1185 | 12 | g23p13: 32MB + g23p14: 0MB + g24p1: 956W + g24p2: 11W-BY + g24p3: 0MB + g24p4: 100W-BY + g24p5: 14W:BY + g24p6: 23W:MB + g24p7: 13W:BL + g24p8: 23W + g24p9: 0W:MB + g24p10: 13W:BY | |
| 22 | ![]() | g19p14 : 34MB | 34 | 2 | g20p6: 12W:MB + g20p7: 22W:BL | |
| 23 | ![]() | g21p8 : 64W | 64 | 4 | g22p5: 6W:BY + g22p6: 12W:MB + g22p7: 23W:BL + g22p8: 23W | |
| 24 | ![]() | g22p3 : 45BY:MB | 45 | 3 | g25p8: 23W + g25p9: 0W:MB + g25p10: 22W:BY | |
| 25 | ![]() | g22p12 : 32W | 32 | 2 | g23p5: 10W:BY + g23p6: 22W:MB | |
| 26 | ![]() | g25p12 : 22W:BL | 22 | 2 | g26p5: 10W:BY + g26p6: 12W:MB |
Left Handed Sum Detail: - Click on column name to sort
| # | Color | Sum Schema | Sum Cord | Sum Cord Value | # Summands | Summands |
|---|---|---|---|---|---|---|
| 1 | ![]() | g2p6 : 23W-BY | 23 | 2 | g1p10: 12W:MB + g1p11: 11BL:MB | |
| 2 | ![]() | g3p9 : 66W:BL | 66 | 2 | g2p9: 33W:BY + g2p10: 33W:MB | |
| 3 | ![]() | g6p5 : 220W-MB | 220 | 10 | g3p2: 12W + g3p3: 21W + g3p4: 0MB + g3p5: 0BY:BL + g3p6: 0PK + g3p7: 23W-BY + g3p8: 33W-BY + g3p9: 66W:BL + g3p10: 32W:BY + g3p11: 33W:MB | |
| 4 | ![]() | g8p1 : 1089W | 1089 | 2 | g5p1: 1077W + g5p2: 12W-BY | |
| 5 | ![]() | g10p8 : 76W:BL | 76 | 2 | g7p10: 33W:MB + g7p11: 43W | |
| 6 | ![]() | g11p10 : 44W:MB | 44 | 5 | g3p3: 21W + g3p4: 0MB + g3p5: 0BY:BL + g3p6: 0PK + g3p7: 23W-BY | |
| 7 | ![]() | g15p10 : 76W:MB | 76 | 2 | g11p9: 32W:MB + g11p10: 44W:MB | |
| 8 | ![]() | g17p1 : 1356W | 1356 | 10 | g5p5: 50BY:BL + g5p6: 0PK + g5p7: 22W-BY + g5p8: 32W-BY + g5p9: 66W:BL + g5p10: 32W:BY + g5p11: 33W:MB + g5p12: 43W + g5p13: 0W:MB + g6p1: 1078W | |
| 9 | ![]() | g17p13 : 34MB | 34 | 2 | g5p2: 12W-BY + g5p3: 22W | |
| 10 | ![]() | g18p1 : 1164W | 1164 | 5 | g4p11: 33W:MB + g4p12: 42W + g4p13: 0PK + g5p1: 1077W + g5p2: 12W-BY | |
| 11 | ![]() | g19p1 : 1185W | 1185 | 9 | g14p10: 66W:MB + g14p11: 32W + g14p12: 0MB + g14p13: 0PK + g14p14: 42YB + g15p1: 924W + g15p2: 21W-BY + g15p3: 0MB + g15p4: 100W:BL | |
| 12 | ![]() | g20p3 : 43MB | 43 | 2 | g18p6: 22W:MB + g18p7: 21W:BL | |
| 13 | ![]() | g20p12 : 32W:BL | 32 | 2 | g18p8: 11W:BY + g18p9: 21W:MB | |
| 14 | ![]() | g21p1 : 1575W | 1575 | 15 | g18p5: 6W:BY + g18p6: 22W:MB + g18p7: 21W:BL + g18p8: 11W:BY + g18p9: 21W:MB + g18p10: 21W:MB + g18p11: 0W:MB + g18p12: 31W:BL + g18p13: 0BY:MB + g18p14: 22MB + g19p1: 1185W + g19p2: 25W + g19p3: 0PK + g19p4: 200W-BY + g19p5: 10W:BY | |
| 15 | ![]() | g21p7 : 64W:BL | 64 | 3 | g17p9: 20W:BY + g17p10: 0W:MB + g17p11: 44W:BL | |
| 16 | ![]() | g21p9 : 54W:MB | 54 | 3 | g18p6: 22W:MB + g18p7: 21W:BL + g18p8: 11W:BY | |
| 17 | ![]() | g22p1 : 1162W | 1162 | 3 | g10p10: 33W:MB + g10p11: 42W + g11p1: 1087W | |
| 18 | ![]() | g22p3 : 45BY:MB | 45 | 2 | g20p7: 22W:BL + g20p8: 23W | |
| 19 | ![]() | g23p1 : 1385W | 1385 | 14 | g19p2: 25W + g19p3: 0PK + g19p4: 200W-BY + g19p5: 10W:BY + g19p6: 12W:MB + g19p7: 22W:BL + g19p8: 22W + g19p9: 0W:MB + g19p10: 22W:BY + g19p11: 0PK + g19p12: 23W:BL + g19p13: 0PK + g19p14: 34MB + g20p1: 1015W | |
| 20 | ![]() | g24p1 : 956W | 956 | 9 | g9p4: 40W:BL:MB + g9p5: 222W-MB + g9p6: 22W-BY + g9p7: 32W-BY + g9p8: 66W:BL + g9p9: 32W:BY + g9p10: 33W:MB + g9p11: 42W + g9p12: 467W:MB | |
| 21 | ![]() | g26p7 : 24W:BL | 24 | 2 | g21p2: 14W-BY + g21p3: 10BY:MB |
Khipu Notes:
Ashok Khosla's Notes:
Juliana Martins proposes that this is an astronomical khipu - see Martins
Ascher Databook Notes:
Juliana Martins proposes that this is an astronomical khipu - see Martins
Ascher Databook Notes:
- The finishing knot on P10 is knotted around P11. Thus, the end of P10 is tied to P11 at 5. 5 cm. from the bottom of P11.
- Small spaces on the main cord appear between some adjacent pendants. The darkened color of the main cord at those points, leads us to assume that a pendant was present but is now missing. These hypothetical pendants are included in the listing but designated as missing.
- By spacing, the khipu is separated into 25 groups but ends with a break in the main cord at the middle of the 25th group. A marker on the main cord separates the first 15 groups from the last 10 groups.
- At first glance, the groups seem to vary in size and color pattern. However, when viewed as groups of 15 pendants with some positions non-existent in each group, the colors and values are repetitions. The 25 groups of 15 pendants have been arranged in a rectangular table (see Table 1). A blank means the position is non-existent, an M is a missing pendant, and a ? indicates that the pendant is broken so the value is unknown. An unequal sign ≠has been used to mark a change in color. Where there is no color change, but just a color anomaly, the value has been grouped with parentheses i.e. (39). Observe from the table that although similarities remain, there are decided differences between part 1 (groups 1-15) and part 2 (groups 16-26). Also, within part 1, there are several changes after the 5th group and after the 12th group.
Table 1
Group Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 1080 12 22 100 40 23 33 65 33 12 11≠42 456 2 1091 ? 22 100 40 23 33 (76) 33 33 42 ? 3 1078 12 21 ? ? M 23 33 66 32 33 42 4 1069 12 22 ? 40 M 22 33 66 32 33 42 ?≠5 1077 (22) 22≠? 50≠M ≠22 32 66 32 33 43 ? 6 1078 12 100 50 222 22 33 () 32 33 42 ? 7 1179 12≠100 50 222 22 33 66 32 33 43 4?? 8 1089 12 100 50 M 22 33 66 32 33 42 4??≠9 1078 12 100 40 222 22 32 66 32 33 42 467 10 1087 (12) 100 40 222 22 32 () 22 33 42 11 1087 12 100 40 M 22 32 ? 32 44 42 12 1065 12 ≠100≠40 ≠? 22≠32≠M ≠3?≠(33) (42) - 13 912 11 0 100 (4?) 0 222 M 32 (66) 32 ? 32 14 1030 21 0 100 M≠0 222 32 32 66 32 ? ≠(42) 15 924 21 0 100 40 0 222 32 32 66 32 ? (M) 42 16 1356 12 200 10 (22) 32 32 M (20) ? 44 (0) 34 8?? 17 1164 (12) ? 200 6 22 21 11≠21 21 ? 31 (0) 22 18 1185 (25) ? (200) 10 (12) 22 22 ? 22 ? 23 ? 34 19 1015 13 43≠1?? 15 12 22 23 23 23 M 32≠? (34) 20 1575 14 ? 200 (7) 32 64 64 54 54 M 32 ? 22 21 1162 13 45 100 6 12 23 23 23 23 (?) 32 ? 31 22 1385 12 ? 100 10 22 43 34 3? 43 22 22 M 32 23 956 11 (?) 100 14 23 13 23 ? 13 (?) 22 (?) 22 ? 24 996 10 0 200 6 ? 23 23 ? 22 ? 22 25 997 11 0 200 10 12
















































