KH0156/UR1140, AS140/N9 - Pendant Pendant Sums


Drawings:

Right Handed Sums:     # Sums = 53,  Max # Summands = 7,   (Min, Mean, Max) Sum Values = (11, 40, 114)
Click on Image to View Larger

Left Handed Sums:     # Sums = 49,  Max # Summands = 6,   (Min, Mean, Max) Sum Values = (11, 40, 114)
Click on Image to View Larger

Right Handed Sum Detail: - Click on column name to sort
# Color Sum Schema Sum Cord Sum Cord Value # Summands Summands
1
g1p9 : 96B964g3p4: 19B + g3p5: 29B + g3p6: 18B + g3p7: 30B
2
g2p5 : 22B223g7p6: 6B:BB + g7p7: 14B:BB + g7p8: 2B
3
g2p7 : 17B172g7p5: 11B + g7p6: 6B:BB
4
g2p9 : 91B915g4p1: 20B + g4p2: 25B + g4p3: 20B + g4p4: 15B + g4p5: 11B
5
g3p2 : 13B132g4p7: 11B + g4p8: 2B
6
g3p4 : 19B192g7p1: 9B + g7p2: 10B
7
g3p5 : 29B292g7p4: 18B + g7p5: 11B
8
g3p9 : 95B952g7p8: 2B + g7p9: 93B
9
g4p3 : 20B202g7p6: 6B:BB + g7p7: 14B:BB
10
g4p9 : 90B904g5p2: 32B + g5p3: 23B + g5p4: 23B + g5p5: 12B
11
g5p1 : 34B342g7p3: 16B + g7p4: 18B
12
g5p9 : 98B984g6p2: 36B + g6p3: 26B + g6p4: 26B + g6p5: 10B
13
g6p4 : 26B262g7p2: 10B + g7p3: 16B
14
g6p6 : 15B152g8p5: 10B + g8p6: 5B:BB
15
g6p9 : 79B793g9p4: 45B + g9p5: 16B + g9p6: 18B:BB
16
g8p4 : 36B362g14p4: 20B:G + g14p5: 16B
17
g8p9 : 93B934g14p7: 12B + g14p8: 32B + g14p9: 15B + g15p1: 34B
18
g9p4 : 45B455g15p5: 6B + g15p6: 18B + g15p7: 10B + g15p8: 6B + g15p9: 5B
19
g9p9 : 98B982g12p9: 35B + g13p1: 63B
20
g10p3 : 28B282g13p2: 6B + g13p3: 22B:G
21
g10p7 : 18B:BB182g15p3: 6B:G + g15p4: 12B:G
22
g10p9 : 96B965g14p5: 16B + g14p6: 21B + g14p7: 12B + g14p8: 32B + g14p9: 15B
23
g12p1 : 114B1145g14p6: 21B + g14p7: 12B + g14p8: 32B + g14p9: 15B + g15p1: 34B
24
g12p3 : 23B:G232g18p7: 11B + g18p8: 12B
25
g12p4 : 24B:G243g15p3: 6B:G + g15p4: 12B:G + g15p5: 6B
26
g12p5 : 31B312g14p3: 11B:G + g14p4: 20B:G
27
g12p6 : 30B302g16p3: 11B:BB + g16p4: 19B:BB
28
g12p8 : 69B692g13p1: 63B + g13p2: 6B
29
g12p9 : 35B353g18p7: 11B + g18p8: 12B + g18p9: 12B
30
g13p1 : 63B637g15p3: 6B:G + g15p4: 12B:G + g15p5: 6B + g15p6: 18B + g15p7: 10B + g15p8: 6B + g15p9: 5B
31
g13p3 : 22B:G223g15p2: 4B + g15p3: 6B:G + g15p4: 12B:G
32
g13p5 : 17B172g14p2: 6B + g14p3: 11B:G
33
g13p8 : 61B612g16p1: 53B + g16p2: 8B
34
g14p3 : 11B:G112g15p8: 6B + g15p9: 5B
35
g14p5 : 16B162g15p7: 10B + g15p8: 6B
36
g14p6 : 21B213g15p7: 10B + g15p8: 6B + g15p9: 5B
37
g14p8 : 32B322g17p3: 10B:BB + g17p4: 22B:BB
38
g15p6 : 18B182g17p2: 8B + g17p3: 10B:BB
39
g16p1 : 53B534g18p6: 18B + g18p7: 11B + g18p8: 12B + g18p9: 12B
40
g16p4 : 19B:BB192g21p8: 11B + g21p9: 8B
41
g16p5 : 25B252g19p2: 8B + g19p3: 17B:BB
42
g16p6 : 24B242g18p8: 12B + g18p9: 12B
43
g16p9 : 21B212g17p6: 18B + g17p7: 3B
44
g17p4 : 22B:BB222g18p3: 11B:BB + g18p4: 11B:BB
45
g17p6 : 18B182g18p2: 7B + g18p3: 11B:BB
46
g17p8 : 27B272g21p4: 14B:BB + g21p5: 13B
47
g18p1 : 56B563g19p5: 23B + g19p6: 20B + g19p7: 13B
48
g19p3 : 17B:BB172g20p2: 4B + g20p3: 13B:BB
49
g19p4 : 18B:BB182g20p3: 13B:BB + g20p4: 5B:BB
50
g19p6 : 20B202g20p7: 4B + g20p8: 16B
51
g19p8 : 37B373g20p4: 5B:BB + g20p5: 11B + g20p6: 21B
52
g20p5 : 11B112g21p2: 4B + g21p3: 7B:BB
53
g20p6 : 21B212g21p3: 7B:BB + g21p4: 14B:BB

Left Handed Sum Detail: - Click on column name to sort
# Color Sum Schema Sum Cord Sum Cord Value # Summands Summands
1
g3p1 : 16B162g1p1: 3B + g1p2: 13B
2
g3p7 : 30B302g2p3: 20B + g2p4: 10B
3
g3p9 : 95B952g2p8: 4B + g2p9: 91B
4
g5p1 : 34B342g1p4: 22B + g1p5: 12B
5
g5p2 : 32B322g2p4: 10B + g2p5: 22B
6
g5p9 : 98B982g3p8: 3B + g3p9: 95B
7
g6p2 : 36B363g1p5: 12B + g1p6: 14B + g1p7: 10B
8
g6p3 : 26B262g4p6: 15B + g4p7: 11B
9
g6p9 : 79B796g1p2: 13B + g1p3: 8B + g1p4: 22B + g1p5: 12B + g1p6: 14B + g1p7: 10B
10
g7p7 : 14B:BB142g1p7: 10B + g1p8: 4B
11
g8p1 : 22B223g7p6: 6B:BB + g7p7: 14B:BB + g7p8: 2B
12
g8p4 : 36B362g6p4: 26B + g6p5: 10B
13
g8p7 : 17B:BB172g7p5: 11B + g7p6: 6B:BB
14
g9p2 : 41B413g4p4: 15B + g4p5: 11B + g4p6: 15B
15
g9p3 : 15B152g8p5: 10B + g8p6: 5B:BB
16
g9p4 : 45B453g7p3: 16B + g7p4: 18B + g7p5: 11B
17
g9p5 : 16B162g7p7: 14B:BB + g7p8: 2B
18
g9p9 : 98B983g6p9: 79B + g7p1: 9B + g7p2: 10B
19
g10p1 : 31B313g7p5: 11B + g7p6: 6B:BB + g7p7: 14B:BB
20
g10p3 : 28B283g4p6: 15B + g4p7: 11B + g4p8: 2B
21
g10p4 : 43B432g5p6: 25B + g5p7: 18B
22
g10p5 : 35B353g7p4: 18B + g7p5: 11B + g7p6: 6B:BB
23
g10p8 : 22B222g8p6: 5B:BB + g8p7: 17B:BB
24
g10p9 : 96B964g3p4: 19B + g3p5: 29B + g3p6: 18B + g3p7: 30B
25
g12p1 : 114B1144g6p9: 79B + g7p1: 9B + g7p2: 10B + g7p3: 16B
26
g12p4 : 24B:G243g8p6: 5B:BB + g8p7: 17B:BB + g8p8: 2B
27
g12p7 : 20B202g7p6: 6B:BB + g7p7: 14B:BB
28
g12p8 : 69B695g1p2: 13B + g1p3: 8B + g1p4: 22B + g1p5: 12B + g1p6: 14B
29
g13p9 : 25B252g6p5: 10B + g6p6: 15B
30
g14p1 : 53B534g7p1: 9B + g7p2: 10B + g7p3: 16B + g7p4: 18B
31
g14p6 : 21B212g10p6: 3B:BB + g10p7: 18B:BB
32
g14p8 : 32B323g8p5: 10B + g8p6: 5B:BB + g8p7: 17B:BB
33
g15p1 : 34B342g9p5: 16B + g9p6: 18B:BB
34
g16p1 : 53B533g14p9: 15B + g15p1: 34B + g15p2: 4B
35
g16p3 : 11B:BB112g15p8: 6B + g15p9: 5B
36
g16p6 : 24B242g15p5: 6B + g15p6: 18B
37
g16p8 : 21B213g15p7: 10B + g15p8: 6B + g15p9: 5B
38
g17p1 : 75B754g9p5: 16B + g9p6: 18B:BB + g9p7: 30B:BB + g9p8: 11B
39
g17p4 : 22B:BB223g15p2: 4B + g15p3: 6B:G + g15p4: 12B:G
40
g17p8 : 27B272g13p6: 16B + g13p7: 11B
41
g18p1 : 56B566g15p2: 4B + g15p3: 6B:G + g15p4: 12B:G + g15p5: 6B + g15p6: 18B + g15p7: 10B
42
g19p1 : 70B703g14p1: 53B + g14p2: 6B + g14p3: 11B:G
43
g19p3 : 17B:BB172g14p2: 6B + g14p3: 11B:G
44
g19p5 : 23B232g18p7: 11B + g18p8: 12B
45
g19p7 : 13B132g4p7: 11B + g4p8: 2B
46
g19p8 : 37B372g14p5: 16B + g14p6: 21B
47
g20p1 : 45B455g15p5: 6B + g15p6: 18B + g15p7: 10B + g15p8: 6B + g15p9: 5B
48
g20p6 : 21B212g17p6: 18B + g17p7: 3B
49
g21p1 : 28B282g15p6: 18B + g15p7: 10B

Khipu Notes:
Ashok Khosla Notes:
This khipu has been entered with a strange nonconsecutive numbering scheme, indicating either the clusters are off, or the pendants are misnumbered. Investigation into the databook is warranted.



Ascher Databook Notes:
  1. The khipu is attached to a carved wooden bar.
  2. KH00146 and AS140 were acquired by the Museum in 1904. The provenance is given as Nasca. For a comparison of them, see KH00146.
  3. AS140 is discussed by Nordenskiold (see Introduction) .A photograph of it appears in Schmidt, Max, 1929, Kunst und Kultur von Peru, Impropyläen-Verlagzu, Berlin.
  4. The way in which the bar is threaded separates the khipu into 2 parts each containing 10 groups of 9 pendants each

    Note: The pendant order on the listing proceeds from one end of the bar to the other, goes around the end, and continues on the other side. However, similar color and number patterns are found in both parts if the pendants are read instead from one end of the bar to the other, and then beginning at the original end on the other side of the bar. We will, therefore, refer to the pendants and groups on side 2 as if following the second scenario. Part 1 is pendants 1--->90 and references to the jth pendant in the ith group correspond to pendant 9 (i-1) +j. Part 2 is pendants 180--->91 and references to the jth pendant in the ith group correspond to pendant 190-9i-j.

    By color, each part is separated into 2 subparts of 6 groups and 4 groups respectively. Each group has the same color pattern: 5 B, 2 mixed, 2 B. In the first 6 groups in part 1, the 2 mixed cords are B:BB/B, and in the last 4 groups they are B:BB. In the first 6 groups in part 2, the 2 mixed cords are B:BB, and in the last 4 groups they are B:G.

  5. Subsidiaries are only on the last pendant in each group in part 1. All are BB.
  6. In all groups in both parts:
    1. The last pendant in each group has the maximum value.
    2. With the exception of group 10 in part 1, the value on pendant 7 is always great than the value on pendant 8.
  7. Within part 1:
    1. For the 6 groups of the first subpart, the sum of the values in the 5th position equals the sum of the values in the 4th position. That is:
      \[ \sum\limits_{i=1}^{6} P_{i5} = \sum\limits_{i=1}^{6} P_{i6} \]
    2. For the 4 groups of the second subpart, the sum of the values in the first position equals the sum of the values in the second position.
      \[ \sum\limits_{i=7}^{10} P_{i1} = \sum\limits_{i=7}^{10} P_{i2} \]
    3. Excluding the last pendant in each group, the sum of the values in the first group equals the sum of the values in the corresponding group in the second subpart (group 7).
      \[ \sum\limits_{j=1}^{8} P_{1j} = \sum\limits_{j=1}^{8} P_{7j} \]