KH0192/UR1175, AS175 - Pendant Pendant Sums
Drawings:
Right Handed Sums: # Sums = 58, Max # Summands = 23, (Min, Mean, Max) Sum Values = (11, 86, 445)
Click on Image to View Larger
Left Handed Sums: # Sums = 45, Max # Summands = 14, (Min, Mean, Max) Sum Values = (11, 90, 445)
Click on Image to View Larger
Right Handed Sum Detail: - Click on column name to sort
| # | Color | Sum Schema | Sum Cord | Sum Cord Value | # Summands | Summands |
|---|---|---|---|---|---|---|
| 1 | ![]() | g1p2 : 160YG | 160 | 3 | g17p2: 10LB + g17p3: 100YG + g17p4: 50YB | |
| 2 | ![]() | g2p2 : 26LB | 26 | 2 | g11p5: 21YB:0G + g12p1: 5W | |
| 3 | ![]() | g3p1 : 25W | 25 | 9 | g31p3: 6YG + g31p4: 0LB + g31p5: 0YB + g32p1: 3W + g32p2: 10LB + g32p3: 3YG + g32p4: 0YB + g32p5: 0YB:0G + g33p1: 3W | |
| 4 | ![]() | g4p1 : 23W | 23 | 5 | g10p1: 12W + g10p2: 5LB + g10p3: 0YG + g10p4: 0YB + g10p5: 6YB:0G | |
| 5 | ![]() | g4p3 : 77YG | 77 | 2 | g8p1: 66W + g8p2: 11LB | |
| 6 | ![]() | g5p1 : 36W | 36 | 6 | g10p1: 12W + g10p2: 5LB + g10p3: 0YG + g10p4: 0YB + g10p5: 6YB:0G + g11p1: 13W | |
| 7 | ![]() | g5p2 : 33LB | 33 | 2 | g14p1: 30W + g14p2: 3LB | |
| 8 | ![]() | g5p3 : 122YG | 122 | 2 | g9p4: 100YB + g9p5: 22YB:0G | |
| 9 | ![]() | g5p5 : 50YB:0G | 50 | 3 | g11p1: 13W + g11p2: 10LB + g11p3: 27YG | |
| 10 | ![]() | g6p3 : 82YG | 82 | 3 | g19p3: 40YG + g19p4: 0YB + g19p5: 42YB:0G | |
| 11 | ![]() | g6p4 : 58YB | 58 | 7 | g9p5: 22YB:0G + g10p1: 12W + g10p2: 5LB + g10p3: 0YG + g10p4: 0YB + g10p5: 6YB:0G + g11p1: 13W | |
| 12 | ![]() | g7p3 : 79YG | 79 | 3 | g8p5: 11YB:0G + g9p1: 65W + g9p2: 3LB | |
| 13 | ![]() | g8p3 : 129YG | 129 | 3 | g15p1: 31W + g15p2: 5LB + g15p3: 93YG | |
| 14 | ![]() | g8p5 : 11YB:0G | 11 | 4 | g10p2: 5LB + g10p3: 0YG + g10p4: 0YB + g10p5: 6YB:0G | |
| 15 | ![]() | g9p3 : 139YG | 139 | 4 | g9p4: 100YB + g9p5: 22YB:0G + g10p1: 12W + g10p2: 5LB | |
| 16 | ![]() | g9p5 : 22YB:0G | 22 | 6 | g31p3: 6YG + g31p4: 0LB + g31p5: 0YB + g32p1: 3W + g32p2: 10LB + g32p3: 3YG | |
| 17 | ![]() | g11p1 : 13W | 13 | 2 | g18p1: 3W + g18p2: 10LB | |
| 18 | ![]() | g11p3 : 27YG | 27 | 7 | g31p2: 5LB + g31p3: 6YG + g31p4: 0LB + g31p5: 0YB + g32p1: 3W + g32p2: 10LB + g32p3: 3YG | |
| 19 | ![]() | g11p5 : 21YB:0G | 21 | 2 | g36p1: 17W + g36p2: 4LB | |
| 20 | ![]() | g12p3 : 290YG | 290 | 23 | g28p5: 12YB:0G + g29p1: 2W + g29p2: 6LB + g29p3: 75YG + g29p4: 100YB + g29p5: 0YB:0G + g30p1: 2W + g30p2: 7LB + g30p3: 40YG + g30p4: 0LB + g30p5: 0YB + g31p1: 6W + g31p2: 5LB + g31p3: 6YG + g31p4: 0LB + g31p5: 0YB + g32p1: 3W + g32p2: 10LB + g32p3: 3YG + g32p4: 0YB + g32p5: 0YB:0G + g33p1: 3W + g33p2: 10LB | |
| 21 | ![]() | g12p5 : 55YB:0G | 55 | 6 | g30p1: 2W + g30p2: 7LB + g30p3: 40YG + g30p4: 0LB + g30p5: 0YB + g31p1: 6W | |
| 22 | ![]() | g13p1 : 62W | 62 | 13 | g31p1: 6W + g31p2: 5LB + g31p3: 6YG + g31p4: 0LB + g31p5: 0YB + g32p1: 3W + g32p2: 10LB + g32p3: 3YG + g32p4: 0YB + g32p5: 0YB:0G + g33p1: 3W + g33p2: 10LB + g33p3: 16YG | |
| 23 | ![]() | g13p3 : 177YG | 177 | 5 | g15p3: 93YG + g15p4: 50YB + g15p5: 20YB:0G + g16p1: 3W + g16p2: 11LB | |
| 24 | ![]() | g14p3 : 86YG | 86 | 3 | g20p3: 30YG + g20p4: 10YB + g20p5: 46YB:0G | |
| 25 | ![]() | g15p3 : 93YG | 93 | 16 | g30p2: 7LB + g30p3: 40YG + g30p4: 0LB + g30p5: 0YB + g31p1: 6W + g31p2: 5LB + g31p3: 6YG + g31p4: 0LB + g31p5: 0YB + g32p1: 3W + g32p2: 10LB + g32p3: 3YG + g32p4: 0YB + g32p5: 0YB:0G + g33p1: 3W + g33p2: 10LB | |
| 26 | ![]() | g16p2 : 11LB | 11 | 2 | g31p1: 6W + g31p2: 5LB | |
| 27 | ![]() | g16p3 : 85YG | 85 | 6 | g25p1: 6W + g25p2: 4LB + g25p3: 70YG + g25p4: 0LB + g25p5: 0YB:0G + g26p1: 5W | |
| 28 | ![]() | g17p4 : 50YB | 50 | 3 | g19p1: 10W + g19p2: 0LB + g19p3: 40YG | |
| 29 | ![]() | g17p5 : 20YB:0G | 20 | 3 | g28p5: 12YB:0G + g29p1: 2W + g29p2: 6LB | |
| 30 | ![]() | g18p3 : 120YG | 120 | 4 | g28p4: 100YB + g28p5: 12YB:0G + g29p1: 2W + g29p2: 6LB | |
| 31 | ![]() | g18p5 : 13YB:0G | 13 | 2 | g32p1: 3W + g32p2: 10LB | |
| 32 | ![]() | g19p3 : 40YG | 40 | 2 | g20p3: 30YG + g20p4: 10YB | |
| 33 | ![]() | g19p5 : 42YB:0G | 42 | 7 | g32p2: 10LB + g32p3: 3YG + g32p4: 0YB + g32p5: 0YB:0G + g33p1: 3W + g33p2: 10LB + g33p3: 16YG | |
| 34 | ![]() | g20p3 : 30YG | 30 | 7 | g31p1: 6W + g31p2: 5LB + g31p3: 6YG + g31p4: 0LB + g31p5: 0YB + g32p1: 3W + g32p2: 10LB | |
| 35 | ![]() | g20p5 : 46YB:0G | 46 | 4 | g30p3: 40YG + g30p4: 0LB + g30p5: 0YB + g31p1: 6W | |
| 36 | ![]() | g21p3 : 138YG | 138 | 4 | g36p3: 60YG + g36p4: 50YB + g36p5: 18YB:0G + g37p1: 10W | |
| 37 | ![]() | g21p5 : 78YB:0G | 78 | 3 | g36p4: 50YB + g36p5: 18YB:0G + g37p1: 10W | |
| 38 | ![]() | g22p1 : 77W | 77 | 5 | g25p3: 70YG + g25p4: 0LB + g25p5: 0YB:0G + g26p1: 5W + g26p2: 2LB | |
| 39 | ![]() | g22p2 : 35LB | 35 | 10 | g31p3: 6YG + g31p4: 0LB + g31p5: 0YB + g32p1: 3W + g32p2: 10LB + g32p3: 3YG + g32p4: 0YB + g32p5: 0YB:0G + g33p1: 3W + g33p2: 10LB | |
| 40 | ![]() | g22p3 : 268YG | 268 | 21 | g29p1: 2W + g29p2: 6LB + g29p3: 75YG + g29p4: 100YB + g29p5: 0YB:0G + g30p1: 2W + g30p2: 7LB + g30p3: 40YG + g30p4: 0LB + g30p5: 0YB + g31p1: 6W + g31p2: 5LB + g31p3: 6YG + g31p4: 0LB + g31p5: 0YB + g32p1: 3W + g32p2: 10LB + g32p3: 3YG + g32p4: 0YB + g32p5: 0YB:0G + g33p1: 3W | |
| 41 | ![]() | g22p4 : 200YB | 200 | 10 | g25p2: 4LB + g25p3: 70YG + g25p4: 0LB + g25p5: 0YB:0G + g26p1: 5W + g26p2: 2LB + g26p3: 65YG + g26p4: 50YB + g26p5: 0YB:0G + g27p1: 4W | |
| 42 | ![]() | g23p2 : 36LB | 36 | 11 | g31p1: 6W + g31p2: 5LB + g31p3: 6YG + g31p4: 0LB + g31p5: 0YB + g32p1: 3W + g32p2: 10LB + g32p3: 3YG + g32p4: 0YB + g32p5: 0YB:0G + g33p1: 3W | |
| 43 | ![]() | g23p3 : 445YG | 445 | 16 | g37p5: 60YB:0G + g38p1: 10W + g38p2: 12LB + g38p3: 58YG + g38p4: 0YB + g38p5: 60YB + g39p1: 8W + g39p2: 20LB + g39p3: 35YG + g39p4: 0YB + g39p5: 94YB:0G + g40p1: 12W + g40p2: 10LB + g40p3: 36YG + g40p4: 0YB + g40p5: 30YB:0G | |
| 44 | ![]() | g23p4 : 250YB | 250 | 12 | g28p5: 12YB:0G + g29p1: 2W + g29p2: 6LB + g29p3: 75YG + g29p4: 100YB + g29p5: 0YB:0G + g30p1: 2W + g30p2: 7LB + g30p3: 40YG + g30p4: 0LB + g30p5: 0YB + g31p1: 6W | |
| 45 | ![]() | g23p5 : 96YB | 96 | 6 | g41p3: 35YG + g41p4: 0YB + g41p5: 20YB:0G + g42p1: 0W + g42p2: 0LB + g42p3: 41YG | |
| 46 | ![]() | g24p1 : 75W | 75 | 4 | g25p3: 70YG + g25p4: 0LB + g25p5: 0YB:0G + g26p1: 5W | |
| 47 | ![]() | g24p2 : 66LB | 66 | 8 | g30p1: 2W + g30p2: 7LB + g30p3: 40YG + g30p4: 0LB + g30p5: 0YB + g31p1: 6W + g31p2: 5LB + g31p3: 6YG | |
| 48 | ![]() | g24p4 : 86YB | 86 | 15 | g30p3: 40YG + g30p4: 0LB + g30p5: 0YB + g31p1: 6W + g31p2: 5LB + g31p3: 6YG + g31p4: 0LB + g31p5: 0YB + g32p1: 3W + g32p2: 10LB + g32p3: 3YG + g32p4: 0YB + g32p5: 0YB:0G + g33p1: 3W + g33p2: 10LB | |
| 49 | ![]() | g24p5 : 192YB:0G | 192 | 7 | g25p3: 70YG + g25p4: 0LB + g25p5: 0YB:0G + g26p1: 5W + g26p2: 2LB + g26p3: 65YG + g26p4: 50YB | |
| 50 | ![]() | g25p3 : 70YG | 70 | 10 | g30p3: 40YG + g30p4: 0LB + g30p5: 0YB + g31p1: 6W + g31p2: 5LB + g31p3: 6YG + g31p4: 0LB + g31p5: 0YB + g32p1: 3W + g32p2: 10LB | |
| 51 | ![]() | g26p3 : 65YG | 65 | 10 | g32p1: 3W + g32p2: 10LB + g32p3: 3YG + g32p4: 0YB + g32p5: 0YB:0G + g33p1: 3W + g33p2: 10LB + g33p3: 16YG + g33p4: 0YB + g33p5: 20YB | |
| 52 | ![]() | g28p3 : 80YG | 80 | 12 | g30p2: 7LB + g30p3: 40YG + g30p4: 0LB + g30p5: 0YB + g31p1: 6W + g31p2: 5LB + g31p3: 6YG + g31p4: 0LB + g31p5: 0YB + g32p1: 3W + g32p2: 10LB + g32p3: 3YG | |
| 53 | ![]() | g29p4 : 100YB | 100 | 3 | g44p4: 50YB + g44p5: 0YB:0G + g45p1: 50W | |
| 54 | ![]() | g30p3 : 40YG | 40 | 11 | g31p2: 5LB + g31p3: 6YG + g31p4: 0LB + g31p5: 0YB + g32p1: 3W + g32p2: 10LB + g32p3: 3YG + g32p4: 0YB + g32p5: 0YB:0G + g33p1: 3W + g33p2: 10LB | |
| 55 | ![]() | g36p5 : 18YB:0G | 18 | 2 | g41p1: 13W + g41p2: 5LB | |
| 56 | ![]() | g38p3 : 58YG | 58 | 3 | g40p1: 12W + g40p2: 10LB + g40p3: 36YG | |
| 57 | ![]() | g38p5 : 60YB | 60 | 4 | g41p2: 5LB + g41p3: 35YG + g41p4: 0YB + g41p5: 20YB:0G | |
| 58 | ![]() | g39p5 : 94YB:0G | 94 | 6 | g40p2: 10LB + g40p3: 36YG + g40p4: 0YB + g40p5: 30YB:0G + g41p1: 13W + g41p2: 5LB |
Left Handed Sum Detail: - Click on column name to sort
| # | Color | Sum Schema | Sum Cord | Sum Cord Value | # Summands | Summands |
|---|---|---|---|---|---|---|
| 1 | ![]() | g3p3 : 77YG | 77 | 3 | g1p4: 30YB:0G + g2p1: 21W + g2p2: 26LB | |
| 2 | ![]() | g5p3 : 122YG | 122 | 3 | g2p1: 21W + g2p2: 26LB + g2p3: 75YG | |
| 3 | ![]() | g12p3 : 290YG | 290 | 3 | g1p2: 160YG + g1p3: 100YB + g1p4: 30YB:0G | |
| 4 | ![]() | g13p1 : 62W | 62 | 2 | g5p5: 50YB:0G + g6p1: 12W | |
| 5 | ![]() | g13p3 : 177YG | 177 | 6 | g10p5: 6YB:0G + g11p1: 13W + g11p2: 10LB + g11p3: 27YG + g11p4: 100YB + g11p5: 21YB:0G | |
| 6 | ![]() | g14p4 : 50YB | 50 | 2 | g13p5: 20YB:0G + g14p1: 30W | |
| 7 | ![]() | g15p1 : 31W | 31 | 3 | g11p5: 21YB:0G + g12p1: 5W + g12p2: 5LB | |
| 8 | ![]() | g16p2 : 11LB | 11 | 4 | g10p2: 5LB + g10p3: 0YG + g10p4: 0YB + g10p5: 6YB:0G | |
| 9 | ![]() | g18p3 : 120YG | 120 | 5 | g16p2: 11LB + g16p3: 85YG + g16p4: 0YB + g16p5: 20YB:0G + g17p1: 4W | |
| 10 | ![]() | g20p5 : 46YB:0G | 46 | 7 | g10p1: 12W + g10p2: 5LB + g10p3: 0YG + g10p4: 0YB + g10p5: 6YB:0G + g11p1: 13W + g11p2: 10LB | |
| 11 | ![]() | g22p1 : 77W | 77 | 2 | g8p1: 66W + g8p2: 11LB | |
| 12 | ![]() | g22p3 : 268YG | 268 | 13 | g18p1: 3W + g18p2: 10LB + g18p3: 120YG + g18p4: 0YB + g18p5: 13YB:0G + g19p1: 10W + g19p2: 0LB + g19p3: 40YG + g19p4: 0YB + g19p5: 42YB:0G + g20p1: 0W + g20p2: 0LB + g20p3: 30YG | |
| 13 | ![]() | g22p5 : 136YB | 136 | 2 | g14p3: 86YG + g14p4: 50YB | |
| 14 | ![]() | g23p2 : 36LB | 36 | 2 | g15p1: 31W + g15p2: 5LB | |
| 15 | ![]() | g23p3 : 445YG | 445 | 14 | g16p3: 85YG + g16p4: 0YB + g16p5: 20YB:0G + g17p1: 4W + g17p2: 10LB + g17p3: 100YG + g17p4: 50YB + g17p5: 20YB:0G + g18p1: 3W + g18p2: 10LB + g18p3: 120YG + g18p4: 0YB + g18p5: 13YB:0G + g19p1: 10W | |
| 16 | ![]() | g23p5 : 96YB | 96 | 2 | g16p2: 11LB + g16p3: 85YG | |
| 17 | ![]() | g24p3 : 335YG | 335 | 7 | g14p3: 86YG + g14p4: 50YB + g14p5: 20YB:0G + g15p1: 31W + g15p2: 5LB + g15p3: 93YG + g15p4: 50YB | |
| 18 | ![]() | g24p4 : 86YB | 86 | 3 | g20p3: 30YG + g20p4: 10YB + g20p5: 46YB:0G | |
| 19 | ![]() | g24p5 : 192YB:0G | 192 | 5 | g14p3: 86YG + g14p4: 50YB + g14p5: 20YB:0G + g15p1: 31W + g15p2: 5LB | |
| 20 | ![]() | g25p3 : 70YG | 70 | 2 | g17p4: 50YB + g17p5: 20YB:0G | |
| 21 | ![]() | g26p4 : 50YB | 50 | 3 | g19p1: 10W + g19p2: 0LB + g19p3: 40YG | |
| 22 | ![]() | g28p3 : 80YG | 80 | 3 | g25p1: 6W + g25p2: 4LB + g25p3: 70YG | |
| 23 | ![]() | g29p3 : 75YG | 75 | 4 | g25p3: 70YG + g25p4: 0LB + g25p5: 0YB:0G + g26p1: 5W | |
| 24 | ![]() | g30p3 : 40YG | 40 | 2 | g20p3: 30YG + g20p4: 10YB | |
| 25 | ![]() | g33p3 : 16YG | 16 | 5 | g32p3: 3YG + g32p4: 0YB + g32p5: 0YB:0G + g33p1: 3W + g33p2: 10LB | |
| 26 | ![]() | g33p5 : 20YB | 20 | 6 | g31p1: 6W + g31p2: 5LB + g31p3: 6YG + g31p4: 0LB + g31p5: 0YB + g32p1: 3W | |
| 27 | ![]() | g34p3 : 30YG | 30 | 10 | g31p2: 5LB + g31p3: 6YG + g31p4: 0LB + g31p5: 0YB + g32p1: 3W + g32p2: 10LB + g32p3: 3YG + g32p4: 0YB + g32p5: 0YB:0G + g33p1: 3W | |
| 28 | ![]() | g34p5 : 34YB | 34 | 3 | g16p5: 20YB:0G + g17p1: 4W + g17p2: 10LB | |
| 29 | ![]() | g35p3 : 54YG | 54 | 3 | g26p4: 50YB + g26p5: 0YB:0G + g27p1: 4W | |
| 30 | ![]() | g36p1 : 17W | 17 | 3 | g31p1: 6W + g31p2: 5LB + g31p3: 6YG | |
| 31 | ![]() | g36p3 : 60YG | 60 | 9 | g30p3: 40YG + g30p4: 0LB + g30p5: 0YB + g31p1: 6W + g31p2: 5LB + g31p3: 6YG + g31p4: 0LB + g31p5: 0YB + g32p1: 3W | |
| 32 | ![]() | g37p3 : 29YG | 29 | 3 | g33p1: 3W + g33p2: 10LB + g33p3: 16YG | |
| 33 | ![]() | g38p3 : 58YG | 58 | 6 | g30p2: 7LB + g30p3: 40YG + g30p4: 0LB + g30p5: 0YB + g31p1: 6W + g31p2: 5LB | |
| 34 | ![]() | g39p3 : 35YG | 35 | 10 | g31p3: 6YG + g31p4: 0LB + g31p5: 0YB + g32p1: 3W + g32p2: 10LB + g32p3: 3YG + g32p4: 0YB + g32p5: 0YB:0G + g33p1: 3W + g33p2: 10LB | |
| 35 | ![]() | g39p5 : 94YB:0G | 94 | 2 | g6p5: 9YB:0G + g7p1: 85W | |
| 36 | ![]() | g40p3 : 36YG | 36 | 3 | g33p3: 16YG + g33p4: 0YB + g33p5: 20YB | |
| 37 | ![]() | g41p1 : 13W | 13 | 2 | g33p1: 3W + g33p2: 10LB | |
| 38 | ![]() | g42p3 : 41YG | 41 | 2 | g37p2: 12LB + g37p3: 29YG | |
| 39 | ![]() | g42p5 : 49YB:0G | 49 | 5 | g33p2: 10LB + g33p3: 16YG + g33p4: 0YB + g33p5: 20YB + g34p1: 3W | |
| 40 | ![]() | g43p2 : 40LB | 40 | 2 | g41p2: 5LB + g41p3: 35YG | |
| 41 | ![]() | g44p1 : 70W | 70 | 2 | g38p2: 12LB + g38p3: 58YG | |
| 42 | ![]() | g44p3 : 140YG | 140 | 4 | g42p3: 41YG + g42p4: 0YB + g42p5: 49YB:0G + g43p1: 50W | |
| 43 | ![]() | g45p3 : 125YG | 125 | 5 | g43p3: 15YG + g43p4: 0YB + g43p5: 0YB:0G + g44p1: 70W + g44p2: 40LB | |
| 44 | ![]() | g45p4 : 90YB | 90 | 2 | g43p1: 50W + g43p2: 40LB | |
| 45 | ![]() | g45p5 : 11YB:0G | 11 | 2 | g31p2: 5LB + g31p3: 6YG |
Khipu Notes:
Ascher Databook Notes:
- This is one of several khipus acquired by the Museum in 1907 with provenance Pachacamac. For a list of them, see KH0110.
- By spacing, the khipu is separated into 45 groups of 5 pendants each. There is a larger space after every 3rd group and a still larger space between the 21st and 22nd groups and the 24th and 25th groups. Thus, the khipu is in 3 parts: part 1 is 7 sets of 3 groups each; part 2 is 1 set of 3 groups; and part 3 is 7 sets of 3 groups.
- All groups in part 1 have the same color pattern: W (with a W subsidiary); LB (with an LB subsidiary); YG; YB; YB: 0G. Groups in parts 2 and 3 have the same pattern for the first 3 pendant positions and then vary in one or both of the last 2 positions. Calling the colors in the part 1 pattern C1-C5, the color patterns are summarized in Table 1.
TABLE 1
Part 1 (groups 1-21) C1 C2 C3 C4 C5 Part 2 (groups 1-3) C1 C2 C3 C4 C4 Part 3 (groups 1-5) C1 C2 C3 C2 C5 Part 3 (groups 6-8) C1 C2 C3 C2 C4 Part 3 (groups 9-21) C1 C2 C3 C4 C4
In all groups, there is at least one subsidiary on pendants 1 and 2 (a W and an LB respectively) and no subsidiaries on the other positions. Additional subsidiaries on the first 2 positions are, with one exception, KB:W or LB-W.
- In parts 1 and 3, many values are repeated in the same position in consecutive groups or in the same position 2 groups later. The former can be represented as:,
Pij= Pi+1,j and the latter as Pij = Pi+2,jIn part 1, these hold in 20 and 12 places respectively; in part 2 in no places; and in part 3 in 27 and 18 places.
- The values in part 2 are related to the sums of values in part 3. Position by position, values in group 1 of part 2 are related to the sums of values in the first groups in each of the 7 sets in part 3; group 2 values are related to sums of values in the second groups of each of the sets; and group 3 values to the sums of values of the third group. That is:
\[ P_{2ij}= \sum\limits_{k=0}^{6} P_{3,3k+i,j}\;\;\;for\;j=(1,2,...5),\;\; i=(1,2,3) \]This represents 15 sums and 105 values being summed. Of the 15 values in part 2, 8 are exactly these sums (or off by 1 in 1 digit); 5 are exact sums of only some of the 7 pendants:
Example: P211 = P341 + P3,10,1 + P3,13,1 + P3,16,1 + P3,19,1 thus omitting P311 and P371
and 2 are less than the sums but cannot be associated with a specific subset of the 7 pendants. (Note that the main cord is broken and so there could have been another part prior to part 1 that summed its values.








































































































